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PREDVODITELEV HYDRODYNAMICS AT
HIGH VELOCITIES
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The Predvoditelev hydrodynamics is extended to the steady-state flow of an incompressible
fluid at relativistic velocities,

The behavior of a system of N interacting particlesis described in statistical physics by the Liouville
equation, A successive conversion from the Liouville equation to the Boltzmann equation and then to the
equations of hydrodynamics represents a "short-cut description® [1] with a loss of some information about
the system behavior. In [2] Predvoditelev has pointed out one such special but important case where in-
formation is lost during the conversion from the Boltzmann equation to the equations of hydrodynamics,
namely the case where the gradients of the molecule transport velocities vary appreciably along the free
path or over the extent of a characteristic volume element. This situation prevails during the flow of a
rarefied gas, during a flow with vortex generation, or during a flow at sufficiently high velocities, The
first two cases are covered by the Predvoditelev universal equations of hydrodynamics [2]. The third case
motion at high velocities, involves relativistic hydrodynamics, In this article here we extend Predvodite-
lev's ideas fo the equations of steady-state relativistic hydrodynamics for an incompressible fluid.

Nonrelativistic Predvoditelev Hydrodynamics. In [2] Predvoditelev has used the Maxwell method for
extending the equations of hydrodynamics to the case where the gradients of transport velocities within a
hydrodynamic volume element are high, For an ideal compressible fluid these equations are
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The parameter of nonideal continuum g in Eq. (1)
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where Kn is the Knudsen number and M is the Mach number.

When 8 =0 in (1), then
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and we have the ordinary Euler equations; when 8 =2, then
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and we have the Kesterin hydrodynamics.
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If we now consider an incompressible fluid, then (2) becomes

du,
=0, (6)
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and Egs. (1) become
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To this must be added the equation of state
Fp, 0, T) = 0. (8)

Universal Equations of Steady-State Relativistic Hydrodynamics, It has become feasible to generalize,
in the Predvoditelev sense, the equations of steady-state relativistic hydrodynamics for an incompressible
fluid owing, essentially, to the discovery by Frankl' [3] and further study by Shikin [4] of the possibility
to reduce the equations of steady-state relativistic hydrodynamics for some effective fluid. The generaliza-
fion shown here represents the solution to the reverse problem.

We infroduce, as in [4], the following quantities:
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where m is the standstill mass of particle; n and w are, respectively, the number of particles and the
relativistic thermal function of the specific volume; u, are the space components of four-component veloc-
ities; and c is the velocity of light,

Inserting (9) and (10) into (6) and (7) yields the equation of steady-state continuity
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and the equations of steady-state hydrodynamics
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It has been assumed in the derivation of (11) and (12) that

n == const, = const. (13)
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Equations (11) and (12) are the universal Predvoditelev equations of steady-state relativistic hydrodynamics
for an incompressible fluid. When 8 =0, then (12) and (11) become, respectively, the ordinary equations
of steady-state relativistic hydrodynamics and the equation of steady-state relativistic continuity {5-6].
This generalization of the equations of steady-state relativistic hydrodynamics will also apply to weakly
compressible fluid: where the term gv,, (av.),/ ax,y) is small as compared to all other terms in these equa-
tions.

NOTATION
vy  is the three-component velocity;
u,  is the four-component velocity;
p is the pressure;
p is the density;
8 is the Predvoditelev number (constant hydrodynamic parameter),
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